A GENETIC ALGORITHM FOR STRUCTURAL OPTIMIZATION WITH A DISCONTINUOUS COST FUNCTION
نویسندگان
چکیده
منابع مشابه
STRUCTURAL OPTIMIZATION USING A MUTATION-BASED GENETIC ALGORITHM
The present study is an attempt to propose a mutation-based real-coded genetic algorithm (MBRCGA) for sizing and layout optimization of planar and spatial truss structures. The Gaussian mutation operator is used to create the reproduction operators. An adaptive tournament selection mechanism in combination with adaptive Gaussian mutation operators are proposed to achieve an effective search in ...
متن کاملA Genetic Algorithm for Multiobjective Structural Optimization
A genetic algorithm for multiobjective optimization is presented which tries to evolve an evenly distributed set of solutions belonging to the Pareto set by: (i) ranking the population according to nondomination properties; (ii) defining a filter to retain Pareto set solutions and (iii) using adequate operators: exclusion, addition and single-objective operator which improves the individuals fr...
متن کاملTowards a Genetic Algorithm for Function Optimization
This article analyses a version of genetic algorithm (GA, Holland 1975) designed for function optimization, which is simple and reliable for most applications. The novelty in current approach is random provision of parameters, created by the GA. Chromosome portions which do not t ranslate into fitness are given function to diversify control parameters for the GA, providing random parameter sett...
متن کاملA New Approach to Software Cost Estimation by Improving Genetic Algorithm with Bat Algorithm
Because of the low accuracy of estimation and uncertainty of the techniques used in the past to Software Cost Estimation (SCE), software producers face a high risk in practice with regards to software projects and they often fail in such projects. Thus, SCE as a complex issue in software engineering requires new solutions, and researchers make an effort to make use of Meta-heuristic algorithms ...
متن کاملA Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables
A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Structural and Construction Engineering (Transactions of AIJ)
سال: 1994
ISSN: 1340-4202,1881-8153
DOI: 10.3130/aijs.59.119_2